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The sulfoxide–magnesium exchange reaction of aryl 1-chlorocyclopropyl sulfoxides with i-PrMgCl in THF
at low temperature gave magnesium cyclopropylidenes. Treatment of the magnesium cyclopropylidenes
with lithium naphtholates or phenolates resulted in the formation of spiro[2.6]nonadienones in up to 82%
yield. The structure of the spiro[2.6]nonadienones was found to be dependent on the structure of the
naphtholates and phenolates.
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1. Introduction

Cyclopropanes are one of the most important and fundamental
compounds in organic and synthetic organic chemistry. Because of
their highly strained nature, cyclopropanes have long been
recognized to be highly versatile compounds in organic synthesis
and innumerable studies on their chemistry, synthesis, and
synthetic uses have been carried out;1 however, new methods for
the synthesis of cyclopropanes are still very much desired.
Recently, we are interested in the use of magnesium cyclopropyl-
idenes in organic synthesis,2 and some new synthetic methods
were reported. Those are as follows: generation and properties of
magnesium cyclopropylidenes,3 synthesis of alkylidenecyclopro-
panes,4 N-cyclopropylation of arylamines,5 and direct ortho-cyclo-
propylation of arylamines.6

In continuation of our investigation for the development of new
synthetic method utilizing the magnesium cyclopropylidenes, we
studied the reaction of the magnesium cyclopropylidenes with
lithium naphtholates and phenolates, and very interesting results
were obtained. Thus, the magnesium cyclopropylidenes 2, derived
from aryl 1-chlorocyclopropyl sulfoxides 1 with i-PrMgCl, were
treated with lithium naphtholates or lithium phenolates 3 to afford
unexpected spiro[2.6]nonadienones 4 or 5 in variable yields. This
reaction offers a new method for a short synthesis of various kinds
ll rights reserved.
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of spiro[2.6]nonadienones 4 or 5 from naphthols and phenols
(Scheme 1).

2. Results and discussion

Recently, we reported that the reaction of magnesium cyclopro-
pylidenes with N-lithio arylamines resulted in the formation of
ortho-cyclopropylated arylamines.6 In continuation of this chemis-
try, we investigated the reaction of magnesium cyclopropylidene 7,
which was generated from 1-chlorocyclopropyl phenyl sulfoxide 1
(R1 = H, Ar = Ph) with i-PrMgCl at �78 �C, with lithium 1-naphtho-
late 6a, and 2-cyclopropylated 1-naphthol 8a was obtained in 37%
yield (Scheme 2).

Next, the reaction was carried out with lithium 4-methoxy-1-
naphtholate 6b. Very interestingly, this reaction afforded 2-cyclo-
propylated compound 8b (23%) and unexpected ring-expanded
spiro[2.6]nona-5,7-dien-4-one derivative 9b in 47% yield. Further,
the reactions of 6a and 6b with magnesium cyclopropylidene
having gem-dimethyl groups 10 were investigated. Interestingly,
these reactions afforded ring-expanded spiro[2.6]nonadienones
11a (70%)7 and 11b (82%), respectively, as a sole product without
2-cyclopropylated product.

A plausible mechanism of this reaction is as follows (Scheme 3).
Addition reaction of magnesium carbenoid 10 is expected to take
place with naphtholate 6b at the most electron-rich double bond
to afford the highly strained spiro[2.2]pentane intermediate A.
Carbon–carbon bond-cleavage of the cyclopropanolate moiety,
depicted in A, would take place easily because of the ring-strain

mailto:tsatoh@rs.kagu.tus.ac.jp
http://www.sciencedirect.com/science/journal/00404039
http://www.elsevier.com/locate/tetlet


R1 Cl
S(O)Ar

i-PrMgCl
R1 Cl

MgCl

OLi

R2

R1 O

R2

R1

O

R2or

1 2

3

4 5

Ar= Ph, p-Tol

Scheme 1.

OLi

R

Cl
MgCl

Cl
MgCl

CH3H3C

OH

R

O

R

H3C
H3C

O

OCH3

6a R=H
6b R=OCH3

8a R=H  37%
8b R=OCH3 23% 9b  47%

11a R=H  70%
11b R=OCH3  82%

THF, -78 ~ -20 ºC

THF, -78 ~ -20 ºC

7

10

Scheme 2.

OLi

OCH3

Cl
MgCl

CH3H3C

10

O

OCH3

H3C
H3C

Li

CH3OD

B

O

OCH3

H3C
H3C

D

A

OCH3

O

H3C
CH3

Li

6b

12

Additon of carbenoid 10 to the 
electron-rich double bond

Scheme 3.

LiO

Cl
MgCl

CH3H3C

O

H3C
H3C

H

THF, -78 ~ -20 ºC
49%

13

10

δ 2.63

Scheme

5432 T. Satoh et al. / Tetrahedron Letters 49 (2008) 5431–5435
to afford the final ring-expanded intermediate B. Protonolysis of B
will give the product 11b. In order to confirm the final intermedi-
ate of this reaction to be B, deuteriolysis of this reaction with
CH3OD was carried out and indeed deuterated product 12 was
obtained with perfect deuterium incorporation.

The reaction of magnesium cyclopropylidene 10 with lithium
2-naphtholate gave spiro[2.6]nona-5,7-dien-4-one 13 in 49% yield
(Scheme 4).8 The structure of 13 was confirmed by X-ray analysis
(Fig. 1).9 The structure of 13 and 11 (see Scheme 2) are quite sim-
ilar; however, the position of the carbonyl group is different. The
same reaction mechanism shown in Scheme 3 can be applied to
this reaction. Quenching of the reaction mixture with CH3OD again
gave mono deuterated compound 14. The deuterium incorporation
was found to be highly stereoselective; only the hydrogen appear-
ing at d 3.70 in the 1H NMR was perfectly replaced by deuterium.

Further reactions of the magnesium cyclopropylidenes with
phenolates and naphtholates were carried out and the results are
summarized in Table 1. The reaction of magnesium cyclopropyl-
idene 7 with lithium phenolate gave only ortho-cyclopropylated
H
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Table 1
The reaction of magnesium cyclopropylidenes with lithium phenolates or naphtholates

R1 Cl
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Figure 1. Crystal structure of spiro[2.6]nonadienone 13.
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phenol 15a in low yield without any ring-expanded product (entry
1). The reaction of magnesium cyclopropylidene 7 with lithium 2-
naphtholate gave ring-expanded product 15b in 37% yield without
1-cyclopropylated 2-naphthol (entry 2).

The reaction of magnesium cyclopropylidene bearing gem-di-
methyl groups 10 with lithium phenolate gave ring-expanded
product, 1,1-dimethylspiro[2.6]nona-6,8-dien-5-one 15c,10 in 22%
yield (entry 3). Quite interestingly, the structure of the product
15c was somewhat different compared with that of the product
from 1-naphthol (11a). The cyclopropane and the carbonyl carbon
adjoin in the structure of 11a; however, a methylene carbon is
present between them in the structure of 15c. All the products
from the reactions of magnesium cyclopropylidene 10 with pheno-
lates have the same structure as shown in entries 3–6 in Table 1.

The structure of the products (15c–f) of the reaction with phe-
nolates cannot be explained by the mechanism shown in Scheme 3.
Another reaction mechanism shown in Scheme 5 is proposed for
the products. We still find it difficult to propose the reason why
Product 15
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Table 1 (continued)

Entry Magnesium cyclopropylidene Naphtholate or phenolate Product 15 Yield (%)
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a 1-Chloro-2,2,3,3-tetramethylcyclopropyl phenyl sulfoxide was used as the starting material.
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the mechanism is different between the reactions with naphtho-
lates and phenolates at present.

The reaction of magnesium cyclopropylidene 10 with lithium
4-chloro-1-naphtholate gave the expected product 15g; however,
the yield was found to be lower than that of 11a and 11b. This
result implied that an electron-withdrawing group may retard
the carbenoid reaction presented herein. The reactions shown in
entries 8 and 9 gave the desired 1,1-dimethylspiro[2.6]nona-5,7-
dien-4-ones 15h and 15i in variable yields. Finally, fully substi-
tuted magnesium cyclopropylidene 16 was treated with lithium
4-methoxynaphtholate. This reaction gave the desired product
15j; however, the yield was not satisfactory (entry 10). Many un-
known by-products, each as a small amount, were obtained when
the yields of the spiro[2.6]nonadienones were low.
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In conclusion, we report for the first time, a novel reaction of
magnesium cyclopropylidenes with lithium naphtholates and
phenolates to give ring-expanded spiro[2.6]nonadienones. There
are only a few reports on the reactions of lithium cyclopro-
pylidenes;11 however, no report has appeared for the reaction with
naphtholates and phenolates. The results described in this
Letter are the first example of the reaction of cyclopropylidenes
with naphtholates and phenolates giving ring-expanded
spiro[2.6]nonadienones.
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